An endpoint to retrieve all of the vector IDs stored in the index without supplying a query vector first.
this is my matches.ts file
hiii
TypeError: Cannot read properties of null (reading ‘Index’)
at getMatchesFromEmbeddings (webpack-internal:///(api)/./src/pages/api/matches.ts:17:28)
i am getting this error after updation of new pinecone dependencies
import { Pinecone } from ‘@pinecone-database /pinecone’; this one
// import { Pinecone, ScoredVector } from “@pinecone-database /pinecone”;
// import { Pinecone, ScoredVector } from “@pinecone-database /pinecone”;
import { Pinecone } from ‘@pinecone-database /pinecone’;
import {PineconeRecord} from ‘@pinecone-database /pinecone’;
export type Metadata = {
url: string,
text: string,
chunk: string,
}
console.log(“metaadataaaa”)
let pinecone: Pinecone | null = null
const getMatchesFromEmbeddings = async (embeddings: number,topK: number,namespace: string): Promise => {
if (!process.env.PINECONE_INDEX_NAME) {
console.log(“process.env.PINECONE_INDEX_NAME”,process.env.PINECONE_INDEX_NAME)
throw (new Error(“PINECONE_INDEX_NAME is not set”))
}
console.log(“pineone=>>>>>>>>>>>>>>>>>>>>>>>>>>>>”,pinecone)
console.log(“hiiiiiii>>>>>>”)
console.log(“process.env.PINECONE_INDEX_NAME”,process.env.PINECONE_INDEX_NAME)
const index = pinecone!.Index(process.env.PINECONE_INDEX_NAME)
console.log(“indexxxxx==>>>>>”,index)
const queryRequest = {
vector: embeddings,
topK,
includeMetadata: true,
namespace,
}
console.log(queryRequest,“queryRequest=>>>>>>>>>>>>>>>>>>>>”)
try {
const queryResult = await index.query(queryRequest)
return queryResult.matches?.map(match => ({
...match,
metadata: match.metadata as Metadata
})) || []
} catch (e) {
console.log("Error querying embeddings: ", e)
throw (new Error(Error querying embeddings: ${e}
,))
}
}
export { getMatchesFromEmbeddings }
this is my chat .ts file
// // Next.js API route support: Routing: API Routes | Next.js
// import { PineconeClient } from “@pinecone-database /pinecone”;
// // import * as Ably from ‘ably’;
// // import { CallbackManager } from “langchain/callbacks”;
// import { CallbackManager } from “@langchain /core/callbacks/manager”;
// // import { LLMChain } from “langchain/chains”;
// import { LLMChain } from “langchain/chains”;
// // import { ChatOpenAI } from “langchain/chat_models/openai”;
// // import { OpenAIEmbeddings } from ‘langchain/embeddings/openai’;
// import { OpenAIEmbeddings, ChatOpenAI, OpenAI } from ‘@langchain /openai’;
// // import { OpenAI } from “langchain/llms/openai”;
// // import { OpenAI } from “@langchain /openai”;
// // import { PromptTemplate } from “langchain/prompts”;
// import { PromptTemplate } from “@langchain /core/prompts”;
// import type { NextApiRequest, NextApiResponse } from ‘next’;
// import { uuid } from ‘uuidv4’;
// import { summarizeLongDocument } from ‘./summarizer’;
// import { ConversationLog } from ‘./conversationLog’;
// import { Metadata, getMatchesFromEmbeddings } from ‘./matches’;
// import { templates } from ‘./templates’;
// const llm = new OpenAI({});
// let pinecone: PineconeClient | null = null
// const initPineconeClient = async () => {
// pinecone = new PineconeClient();
// console.log(“pinecone======>>>>>>>”,pinecone)
// await pinecone.init({
// environment: process.env.PINECONE_ENVIRONMENT!,
// apiKey: process.env.PINECONE_API_KEY!,
// });
// }
console.log(“hiiii”)
import { Pinecone } from ‘@pinecone-database /pinecone’;
// import { PineconeClient } from “@pinecone-database /pinecone”;
import { CallbackManager } from “@langchain /core/callbacks/manager”;
import { LLMChain } from “langchain/chains”;
import { OpenAIEmbeddings, ChatOpenAI, OpenAI } from ‘@langchain /openai’;
import { PromptTemplate } from “@langchain /core/prompts”;
import type { NextApiRequest, NextApiResponse } from ‘next’;
import { uuid } from ‘uuidv4’;
import { summarizeLongDocument } from ‘./summarizer’;
import { ConversationLog } from ‘./conversationLog’;
import { Metadata, getMatchesFromEmbeddings } from ‘./matches’;
import { templates } from ‘./templates’;
// Initialize PineconeClient
// const pinecone = new PineconeClient();
// const llm = new OpenAI({});
// const initPineconeClient = async () => {
// console.log(“Initializing PineconeClient…”);
// await pinecone.init({
// apiKey: process.env.PINECONE_API_KEY!,
// });
// console.log(“PineconeClient initialized successfully!”);
// }
// initPineconeClient().catch(error => {
// console.error(“Error initializing PineconeClient:”, error);
// });
// console.log(“PineconeClient instance:”, pinecone);
// console.log(“initPineconeClient========>>>>>>”,initPineconeClient)
console.log(“in the code>>>>>>”)
const llm = new OpenAI({});
let pinecone: Pinecone | null = null
const pc = new Pinecone({ apiKey: process.env.PINECONE_API_KEY!});
console.log(“PineconeClient instance:”, pc);
// const initPineconeClient = async () => {
// console.log(“Initializing PineconeClient…”);
// // await pinecone({
// // apiKey: process.env.PINECONE_API_KEY!,
// // });
// console.log(“PineconeClient initialized successfully!”);
// }
const initPineconeClient = async () => {
console.log(“Initializing PineconeClient…”);
const pc = new Pinecone({ apiKey: process.env.PINECONE_API_KEY! });
console.log(“PineconeClient initialized successfully!”,pc);
return pc; // Optionally return the Pinecone client for further usage
}
import { NextApiResponseServerIO } from “…/…/types/next”;
import { Namespace } from ‘socket.io ’;
const handleRequest = async ({ prompt, userId, socketIO }: { prompt: string, userId: string, socketIO: any }) => {
if (!pinecone) {
await initPineconeClient();
}
console.log(“handleRequest”,handleRequest)
let summarizedCount = 0;
try {
// const channel = ably.channels.get(userId);
const interactionId = uuid()
// Retrieve the conversation log and save the user's prompt
const conversationLog = new ConversationLog(userId)
const conversationHistory = await conversationLog.getConversation({ limit: 50 })
await conversationLog.addEntry({ entry: prompt, speaker: "user" })
// Build an LLM chain that will improve the user prompt
const inquiryChain = new LLMChain({
llm, prompt: new PromptTemplate({
template: templates.inquiryTemplate,
inputVariables: ["userPrompt", "conversationHistory"],
})
});
const inquiryChainResult = await inquiryChain.call({ userPrompt: prompt, conversationHistory })
const inquiry = inquiryChainResult.text
// Embed the user's intent and query the Pinecone index
const embedder = new OpenAIEmbeddings();
const embeddings = await embedder.embedQuery(inquiry);
socketIO.emit(userId, {
data: {
event: "status",
message: "Finding matches...",
}
})
console.log(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>embedding")
const matches = await getMatchesFromEmbeddings(embeddings,3,"langchain");
console.log(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>below")
const urls = matches && Array.from(new Set(matches.map(match => {
// const metadata = match.metadata as Metadata
// console.log("metadata ==> ", metadata);
// const { id } = metadata
return match.id
})))
const docs = matches && Array.from(
matches.reduce((map, match) => {
const metadata = match.metadata as Metadata;
const { text } = metadata;
if (!map.has(match.id)) {
map.set(match.id, text);
}
return map;
}, new Map())
).map(([_, text]) => text);
const promptTemplate = new PromptTemplate({
template: templates.qaTemplate4,
inputVariables: ["summaries", "question", "conversationHistory"],
});
const chat = new ChatOpenAI({
streaming: true,
verbose: true,
modelName: "gpt-3.5-turbo-0301",
callbackManager: CallbackManager.fromHandlers({
async handleLLMNewToken(token) {
socketIO.emit(userId, {
data: {
event: "response",
token: token,
interactionId
}
})
},
async handleLLMEnd(result) {
socketIO.emit(userId, {
data: {
event: "responseEnd",
token: "END",
interactionId
}
});
}
}),
});
const chain = new LLMChain({
prompt: promptTemplate,
llm: chat,
});
const allDocs = docs.join("\n")
if (allDocs.length > 4000) {
socketIO.emit(userId, {
data: {
event: "status",
message: `Just a second, forming final answer...`,
}
})
}
// const summary = allDocs.length > 4000 ? await summarizeLongDocument({ document: allDocs, inquiry }) : allDocs
const summary = allDocs;
await chain.call({
summaries: summary,
question: prompt,
conversationHistory,
urls: urls
});
} catch (error) {
//@ts-ignore
console.error(error)
}
}
export default async function handler(
req: NextApiRequest,
res: NextApiResponseServerIO
) {
const { body } = req;
const { prompt, userId } = body;
const socketIO = res.socket?.server?.io;
await handleRequest({ prompt, userId, socketIO })
res.status(200).json({ “message”: “started” })
}