An endpoint to retrieve all of the vector IDs stored in the index without supplying a query vector first.
   
 
this is my matches.ts file
hiii 
TypeError: Cannot read properties of null (reading ‘Index’) 
at getMatchesFromEmbeddings (webpack-internal:///(api)/./src/pages/api/matches.ts:17:28) 
i am getting this error after updation of new pinecone dependencies 
import { Pinecone } from ‘@pinecone-database /pinecone’; this one
// import { Pinecone, ScoredVector } from “@pinecone-database /pinecone”; 
// import { Pinecone, ScoredVector } from “@pinecone-database /pinecone”;
import { Pinecone } from ‘@pinecone-database /pinecone’; 
import {PineconeRecord} from ‘@pinecone-database /pinecone’;
export type Metadata = { 
url: string, 
text: string, 
chunk: string, 
} 
console.log(“metaadataaaa”) 
let pinecone: Pinecone | null = null
const getMatchesFromEmbeddings = async (embeddings: number,topK: number,namespace: string): Promise => { 
if (!process.env.PINECONE_INDEX_NAME) { 
console.log(“process.env.PINECONE_INDEX_NAME”,process.env.PINECONE_INDEX_NAME) 
throw (new Error(“PINECONE_INDEX_NAME is not set”)) 
}
console.log(“pineone=>>>>>>>>>>>>>>>>>>>>>>>>>>>>”,pinecone) 
console.log(“hiiiiiii>>>>>>”) 
console.log(“process.env.PINECONE_INDEX_NAME”,process.env.PINECONE_INDEX_NAME) 
const index = pinecone!.Index(process.env.PINECONE_INDEX_NAME)
console.log(“indexxxxx==>>>>>”,index) 
const queryRequest = { 
vector: embeddings, 
topK, 
includeMetadata: true, 
namespace, 
} 
console.log(queryRequest,“queryRequest=>>>>>>>>>>>>>>>>>>>>”) 
try {
const queryResult = await index.query(queryRequest)
return queryResult.matches?.map(match => ({
  ...match,
  metadata: match.metadata as Metadata
})) || []
 
} catch (e) { 
console.log("Error querying embeddings: ", e) 
throw (new Error(Error querying embeddings: ${e},)) 
} 
}
export { getMatchesFromEmbeddings }
this is my chat .ts file
// // Next.js API route support: Routing: API Routes | Next.js  
// import { PineconeClient } from “@pinecone-database /pinecone”; 
// // import * as Ably from ‘ably’; 
// // import { CallbackManager } from “langchain/callbacks”; 
// import { CallbackManager } from “@langchain /core/callbacks/manager”; 
// // import { LLMChain } from “langchain/chains”; 
// import { LLMChain } from “langchain/chains”; 
// // import { ChatOpenAI } from “langchain/chat_models/openai”; 
// // import { OpenAIEmbeddings } from ‘langchain/embeddings/openai’; 
// import { OpenAIEmbeddings, ChatOpenAI, OpenAI } from ‘@langchain /openai’; 
// // import { OpenAI } from “langchain/llms/openai”; 
// // import { OpenAI } from “@langchain /openai”; 
// // import { PromptTemplate } from “langchain/prompts”; 
// import { PromptTemplate } from “@langchain /core/prompts”; 
// import type { NextApiRequest, NextApiResponse } from ‘next’; 
// import { uuid } from ‘uuidv4’; 
// import { summarizeLongDocument } from ‘./summarizer’;
// import { ConversationLog } from ‘./conversationLog’; 
// import { Metadata, getMatchesFromEmbeddings } from ‘./matches’; 
// import { templates } from ‘./templates’;
// const llm = new OpenAI({}); 
// let pinecone: PineconeClient | null = null
// const initPineconeClient = async () => { 
//   pinecone = new PineconeClient(); 
//   console.log(“pinecone======>>>>>>>”,pinecone)
//   await pinecone.init({ 
//     environment: process.env.PINECONE_ENVIRONMENT!, 
//     apiKey: process.env.PINECONE_API_KEY!, 
//   }); 
// }
console.log(“hiiii”)
import { Pinecone } from ‘@pinecone-database /pinecone’;
// import { PineconeClient } from “@pinecone-database /pinecone”; 
import { CallbackManager } from “@langchain /core/callbacks/manager”; 
import { LLMChain } from “langchain/chains”; 
import { OpenAIEmbeddings, ChatOpenAI, OpenAI } from ‘@langchain /openai’; 
import { PromptTemplate } from “@langchain /core/prompts”; 
import type { NextApiRequest, NextApiResponse } from ‘next’; 
import { uuid } from ‘uuidv4’; 
import { summarizeLongDocument } from ‘./summarizer’; 
import { ConversationLog } from ‘./conversationLog’; 
import { Metadata, getMatchesFromEmbeddings } from ‘./matches’; 
import { templates } from ‘./templates’;
// Initialize PineconeClient 
// const pinecone = new PineconeClient(); 
// const llm = new OpenAI({});
// const initPineconeClient = async () => { 
//   console.log(“Initializing PineconeClient…”); 
//   await pinecone.init({ 
//     apiKey: process.env.PINECONE_API_KEY!, 
//   }); 
//   console.log(“PineconeClient initialized successfully!”); 
// } 
// initPineconeClient().catch(error => { 
//   console.error(“Error initializing PineconeClient:”, error); 
// });
// console.log(“PineconeClient instance:”, pinecone);
// console.log(“initPineconeClient========>>>>>>”,initPineconeClient)
console.log(“in the code>>>>>>”) 
const llm = new OpenAI({}); 
let pinecone: Pinecone | null = null
const pc = new Pinecone({ apiKey: process.env.PINECONE_API_KEY!}); 
console.log(“PineconeClient instance:”, pc);
// const initPineconeClient = async () => { 
//   console.log(“Initializing PineconeClient…”); 
//   // await pinecone({ 
//   //   apiKey: process.env.PINECONE_API_KEY!, 
//   // }); 
//   console.log(“PineconeClient initialized successfully!”); 
// } 
const initPineconeClient = async () => { 
console.log(“Initializing PineconeClient…”); 
const pc = new Pinecone({ apiKey: process.env.PINECONE_API_KEY! }); 
console.log(“PineconeClient initialized successfully!”,pc); 
return pc; // Optionally return the Pinecone client for further usage 
}
import { NextApiResponseServerIO } from “…/…/types/next”; 
import { Namespace } from ‘socket.io ’;
const handleRequest = async ({ prompt, userId, socketIO }: { prompt: string, userId: string, socketIO: any }) => { 
if (!pinecone) { 
await initPineconeClient(); 
} 
console.log(“handleRequest”,handleRequest)
let summarizedCount = 0;
try { 
// const channel = ably.channels.get(userId); 
const interactionId = uuid()
// Retrieve the conversation log and save the user's prompt
const conversationLog = new ConversationLog(userId)
const conversationHistory = await conversationLog.getConversation({ limit: 50 })
await conversationLog.addEntry({ entry: prompt, speaker: "user" })
// Build an LLM chain that will improve the user prompt
const inquiryChain = new LLMChain({
  llm, prompt: new PromptTemplate({
    template: templates.inquiryTemplate,
    inputVariables: ["userPrompt", "conversationHistory"],
  })
});
const inquiryChainResult = await inquiryChain.call({ userPrompt: prompt, conversationHistory })
const inquiry = inquiryChainResult.text
// Embed the user's intent and query the Pinecone index
const embedder = new OpenAIEmbeddings();
const embeddings = await embedder.embedQuery(inquiry);
socketIO.emit(userId, {
  data: {
    event: "status",
    message: "Finding matches...",
  }
})
console.log(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>embedding")
const matches = await getMatchesFromEmbeddings(embeddings,3,"langchain");
console.log(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>below")
const urls = matches && Array.from(new Set(matches.map(match => {
  // const metadata = match.metadata as Metadata
  // console.log("metadata ==> ", metadata);
  // const { id } = metadata
  return match.id
})))
const docs = matches && Array.from(
  matches.reduce((map, match) => {
    const metadata = match.metadata as Metadata;
    const { text } = metadata;
    if (!map.has(match.id)) {
      map.set(match.id, text);
    }
    return map;
  }, new Map())
).map(([_, text]) => text);
const promptTemplate = new PromptTemplate({
  template: templates.qaTemplate4,
  inputVariables: ["summaries", "question", "conversationHistory"],
});
const chat = new ChatOpenAI({
  streaming: true,
  verbose: true,
  modelName: "gpt-3.5-turbo-0301",
  callbackManager: CallbackManager.fromHandlers({
    async handleLLMNewToken(token) {
      socketIO.emit(userId, {
        data: {
          event: "response",
          token: token,
          interactionId
        }
      })
    },
    async handleLLMEnd(result) {
      socketIO.emit(userId, {
        data: {
          event: "responseEnd",
          token: "END",
          interactionId
        }
      });
    }
  }),
});
const chain = new LLMChain({
  prompt: promptTemplate,
  llm: chat,
});
const allDocs = docs.join("\n")
if (allDocs.length > 4000) {
  socketIO.emit(userId, {
    data: {
      event: "status",
      message: `Just a second, forming final answer...`,
    }
  })
}
// const summary = allDocs.length > 4000 ? await summarizeLongDocument({ document: allDocs, inquiry }) : allDocs
const summary = allDocs;
await chain.call({
  summaries: summary,
  question: prompt,
  conversationHistory,
  urls: urls
});
 
} catch (error) { 
//@ts-ignore  
console.error(error) 
} 
}
export default async function handler( 
req: NextApiRequest, 
res: NextApiResponseServerIO 
) { 
const { body } = req; 
const { prompt, userId } = body; 
const socketIO = res.socket?.server?.io; 
await handleRequest({ prompt, userId, socketIO }) 
res.status(200).json({ “message”: “started” }) 
}